IN MEMORY OF
JOHN R. APEL
(1930 – 2001)

This Manual is dedicated to Dr. John Ralph Apel who conceived of its creation. The “Father” of SEASAT was a pioneer in the use of remote sensing, in particular synthetic aperture radar (SAR), for investigating the physics of the sea. John believed the key to the wide spread acceptance of SAR was in educating potential users to its benefits. It was a great loss in creating this Manual not to be able to fully take advantage of John’s 40 years of experience. Those who knew and worked with John found him to be a dedicated researcher, a visionary leader and a delightful companion. We will miss him.
ACKNOWLEDGEMENTS

The Editors want to express their gratitude to the many people who made this Manual possible. First and foremost are the Manual’s authors who spent a considerable amount of time preparing and revising their material. Many authors accepted work substantially beyond their original commitment. Next are the Manual’s reviewers whose comments contributed to improving the overall quality of the material.

The development of this manual was supported and monitored by the Office of Research and Applications of the National Oceanic and Atmospheric Administration (NOAA) under contract Number 40AANE901376.

Editorial Board

John R. Apel (1930-2001)
Global Ocean Associates, Silver Spring MD, USA

Christopher R. Jackson
Global Ocean Associates Alexandria, VA USA

Pablo Clemente-Colón
Office of Research and Applications, NOAA/NESDIS, Camp Springs, MD, USA

William G. Pichel
Office of Research and Applications, NOAA/NESDIS, Camp Springs, MD, USA

Robert A. Shuchman
Altarum (formerly ERIM), Ann Arbor, MI, USA

Christopher C. Wackerman
General Dynamics - Advanced Information Systems, Ann Arbor, MI, USA

Additional thanks to Jeannie Leggett Sikora for copy editing, Jim Haines for his spot illustration support, Laura McGinn who handled the references and BookEnd Indexing (Susan Danzi Hernandez) for developing the index.

The views, opinions, and findings contained in this report are those of the author(s) and should not be construed as an official National Oceanic and Atmospheric Administration or U.S. Government position, policy or decision.
The objective of this Manual is to lay out, for a wide range of users, the types of information that may be obtained from SAR images of the ocean, and methods of analyzing the imagery. It is intended for non-expert but scientifically literate workers who wish to use synthetic aperture data in their studies but who do not quite know what to make of the data.

Spaceborne synthetic aperture radar (SAR) provides a unique view of the Earth’s surface. The finely detailed imagery of the ocean’s surface from a SAR is assuredly the most complex and least understood data provided by remote sensing instruments. The sea surface can appear featureless or contain the signatures of such diverse phenomena as surface and internal waves, upwelling, current boundaries, shallow water bathymetry, wind, rainfall, roll vortices, convective cells, storms, and a wide variety of sea ice forms.

This book is divided into four sections. The background material in the first section presents the basic properties of SAR as well as introduces the factors behind how the sea surface and sea ice are observed by radar. The remaining sections are devoted to oceanic, atmospheric and boundary layer measurements and sea ice observations. Where appropriate, information is included on how SAR is being used routinely to aid the operational mission of environmental agencies (see for example Chapters 12, 13 and 20).

One of the keys to the broad acceptance and use of SAR is educating potential users about the capabilities of the sensor. Hence the need for the creation of this Manual. It is hoped that it will prove useful to anyone interested in understanding and applying SAR imagery to their work in the marine environment.
Table of Contents

Preface ... v
Acknowledgements ... vi
Reviewers .. ix

Part I. Background

Chapter 1. Principles of Synthetic Aperture Radar .. 1
Samuel W. (Walt) McCandless Jr. and Christopher R. Jackson

Chapter 2. SAR Imaging of the Ocean Surface ... 25
Benjamin Holt

Chapter 3. SAR Measurements of Sea Ice ... 81
Robert G. Onstott and Robert A. Shuchman

Part II. Oceanic Measurements

Chapter 4. Microwave Scattering from the Sea ... 117
Donald R. Thompson

Chapter 5. Ocean Surface Waves and Spectra .. 139
Paris W. Vachon, Frank M. Monaldo, Benjamin Holt and Susanne Lehner

Chapter 6. Wave Refraction, Breaking, and Other Near-Shore Processes 171
Christopher C. Wackerman and Pablo Clemente-Colón

Chapter 7. Oceanic Internal Waves and Solitons ... 189
John R. Apel

Chapter 8. Ocean Currents and Current Gradients ... 207
David R. Lyzenga, George O. Marmorino and Johnny A. Johannessen

Chapter 9. Upwelling ... 221
Pablo Clemente-Colón

Chapter 10. Underwater Topography ... 245
Werner Alpers, Gordon Campbell, Han Wensink and Quanan Zheng

Chapter 11. Oils and Surfactants .. 263
Werner Alpers and Heidi A. Espedal

Chapter 12. Ship and Wake Detection ... 277
William G. Pichel, Pablo Clemente-Colón, Christopher C. Wackerman and
Karen S. Friedman
Part III. Atmospheric Boundary Layer Measurements

Chapter 13. Wind Speed and Direction...305
 Frank M. Monaldo and Robert Beal

Chapter 14. Marine Atmospheric Boundary Layer Cellular Convection and Longitudinal........321
 Roll Vortices
 Todd D. Sikora and Susanne Ufermann

Chapter 15. Mesoscale Storm Systems...331
 Karen S. Friedman, Paris Vachon and Kristina Katsaros

Chapter 16. Atmospheric Vortex Streets and Gravity Waves.................................341
 Xiaofeng Li

Chapter 17. Rainfall..355
 Werner Alpers and Christian Melsheimer

Part IV. Sea Ice Observations

Chapter 18. Processes at the Ice Edge—The Arctic ..373
 Robert Shuchman, Robert G. Onstott, Ola M. Johannessen, Stein Sandven and
 Johnny A. Johannessen

Chapter 19. Antarctic Sea Ice and Icebergs ...397
 Robert G. Onstott

Chapter 20. Synthetic Aperture Radar for Operational Ice Observation and Analysis........417
 at the U.S., Canadian and Danish National Ice Centers
 Cheryl Bertoia, Mike Manore, Henrik Steen Andersen, Chris O’Connors,
 Keld Q. Hansen and Craig Evanego

Appendices
 A. Satellite Data and Image Products...443
 B. Image Archives and Resources...451
 C. SAR Frequency Bands..453
 D. Author Contact Information...454

Index ..457
REVIEWERS

Werner Alpers
Universität Hamburg
Institut für Meereskunde
Bundesstr. 53,
D-20146 Hamburg, Germany

Ralph Foster
Applied Physics Laboratory
University of Washington
1013 NE 40th St.
Seattle, WA 98105

Robert Beal
The Johns Hopkins University
Applied Physics Laboratory
Laurel, Maryland 20723

Martin Gade
Universität Hamburg
Institut für Meereskunde
Bundesstr. 53,
D-20146 Hamburg, Germany

Cheryl Bertoia
U.S. National Ice Center,
4251 Suitland Road
Washington D.C. 20395

James Gower
Institute of Ocean Sciences
PO Box 6000
9860 West Saanich Road
Sidney, BC V8L 4B2, Canada

Robert Brown
Applied Physics Laboratory
University of Washington
1013 NE 40th St.
Seattle, WA 98105

Martin O. Jeffries
Geophysical Institute
University of Alaska Fairbanks
P.O. Box 757320
Fairbanks, AK 99775

Timothy F. Duda
Applied Ocean Physics & Engineering Dept.
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

Ron Kwok
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Dr
Pasadena, CA 91109

Stephen L. Durden
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Dr
Pasadena, CA 91109

Susanne Lehner
Deutsches Zentrum für Luft- und Raumfahrt
D-82234 Wessling Germany

Steve Elgar
Applied Ocean Physics & Engineering Dept.
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

George A. Leshkevich
NOAA/Great Lakes Environmental Research Laboratory
Ann Arbor, MI 48105-2945

Heidi A. Espedal
Nansen Environmental and Remote Sensing Center
N-5059 Bergen, Norway

Gad Levy
NorthWest Research Associates
Bellevue WA 98009